Learning in Linear Feature-Discovery Networks *
نویسنده
چکیده
We describe the dynamics of learning in unsupervised linear feature-discovery networks that have recurrent lateral connections. Bifurcation theory provides a description of the location of multiple equilibria and limit cycles in the weight-space dynamics.
منابع مشابه
Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملIntroducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks
In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...
متن کاملLearning Markov Blankets for Continuous or Discrete Networks via Feature Selection
Markov Blankets discovery algorithms are important for learning a Bayesian network structure. We present an argument that tree ensemble masking measures can provide an approximate Markov blanket. Then an ensemble feature selection method is used to learn Markov blankets for either discrete or continuous networks (without linear, Gaussian assumptions). We compare our algorithm in the causal stru...
متن کاملOn the convergence speed of artificial neural networks in the solving of linear systems
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper is a scrutiny on the application of diverse learning methods in speed of convergence in neural networks. For this aim, first we introduce a perceptron method based on artificial neural networks which has been applied for solving a non-singula...
متن کاملDynamics of Learning in Recurrent Feature-Discovery Networks
The self-organization of recurrent feature-discovery networks is studied from the perspective of dynamical systems. Bifurcation theory reveals parameter regimes in which multiple equilibria or limit cycles coexist with the equilibrium at which the networks perform principal component analysis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1991